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Abstract—We focus on deriving the single user data rate
distribution from the sum-rate distribution. We discuss a method
based on the inversion of the characteristic function, valid for
both analytical and empirical distributions, and discuss some of
its numerical considerations. Subsequently, we present a novel,
simplified method based on ‘beta scaling’ of the sum-rate vari-
able. We validate our results using simulated sum-rate data and
data from an LTE field measurement. The results demonstrate
close agreement with the true single user distribution.

I. I NTRODUCTION

A key aspect in the acceptance testing of cellular networks is
the estimation of their capacity, where the capacity cumulative
distribution function (cdf) is measured and compared against
acceptable target values. The measurement is done, for exam-
ple, via drive testing, using specialized and calibrated test user
equipment (UE) to perform an FTP download.

Such testing is easy if there is only a single user or a very
small number of users in the cell or cluster consuming all
the radio resources. We define this as the sum capacity of the
cell (or cluster) under test. The acceptance targets, however,
define both sum capacity and a single user (SU) capacity when
a predetermined number of users are simultaneously accessing
the network. A measurement of SU capacity can be cum-
bersome and expensive to undertake, as it requires multiple
synchronised UEs driving independently. Furthermore, there
is a practical limit to the number of UEs that can be tested.
Thus, there is a need to predict SU capacity from the sum
capacity, particularly for a large number of users.

Since measured sum-capacity results originate from only a
handful of UEs, inferring the individual rates of, for example,
10 users from sum-rate measurements of 3 will only provide
an estimate. Nevertheless, such estimates remain practically
important. The focus of this paper is to provide a set of tech-
niques applicable to a broad class of sum-rate measurements
and models where the SU rates are required. Our methods are
designed to be widely applicable and hence are not derived
based on any individual channel model or assumptions. While
the motivation for this work is the sum-rate problem, the
methods described apply to the general problem of deriving
an individual distribution from a distribution of the sum.
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The essence of predicting the SU capacity probability dis-
tribution function (pdf) or cdf from the pdf or cdf of the sum
capacity is the fact that the pdf of the sum ofN independent
random variables is the convolution of their marginal densities.
Thus, as the sum capacity characteristic function (cf) is theN -
th power of an individual cf, theN -th order deconvolution of
the sum capacity pdf, or inverting theN -th root of the sum
capacity cf, will give the SU capacity pdf.

In this paper, we make the following contributions:

• Given the exact distribution of the sum capacity, we show
that the single user capacity is poorly estimated by a
simple scaling of the sum distribution.

• We outline methods based on the inversion of the sum-
rate cf for both analytical and measured data. We discuss
some of the associated numerical challenges and present
methods of overcoming them.

• We present a novel, simplified method of obtaining the
single user cdf based on ‘beta scaling’ of the measured
sum rate data, which avoids the numerical cf inversion.

We have conducted an LTE trial in the2600 MHz band with
a (2, 2) MIMO configuration and have measured sum capacity
in a cell surrounded by a ring of fully loaded interfering
cells that form the first tier of interfering cells in a practical
layout. We have also measured SU capacity when3 UEs
are performing simultaneous FTP downloads. We validate our
contributions using these measurements.

II. PROBLEM DESCRIPTION

Consider the sum-rate variable,Y , composed of the sum
of N independent and identically distributed (iid) variables1,
X1, X2, . . . , XN , such thatY =

∑N
i=1Xi. The common pdf

of X1, X2, . . . , XN is denotedfX(x) with the cdf denoted
by FX(x). Here, X denotes a genericXi variable. The
corresponding cf isψX(t) = E(ejtX). For Y , the pdf, cdf
and cf are denotedfY (y), FY (y) andψY (t), respectively.

When analytical distributions are unavailable but a random
sample is available, empirical estimates may be formed. Let
y1, y2, . . . , yn be a random sample drawn from the distribution
of Y . Then, a sample estimate of the cf is given by [1, p.9]

ψ
(s)
Y (t) =

1

n

n
∑

i=1

ejtyi . (1)

There are many ways to estimate the pdf using sample his-
togram smoothing. One of the most popular is kernel density

1This assumption implies users with the same service grade.



estimation (kde) [2, p.15], where the pdf is estimated by

f
(e)
Y (y) =

1

nh

n
∑

i=1

K

(

y − yi
h

)

, (2)

whereh is the bandwidth andK(·) is the kernel function. The
art of kde therefore relies on the judicious choice ofh and
K(·). In this paper, we use the common choice of a Gaussian

kernel,K(x) = 1√
2π
e−

x
2

2 , and use Silverman’s rule of thumb

[3] for the bandwidth, so thath = 1.06An−
1
5 , whereA =

min{s, IQR
1.34}, s is the standard deviation of the sample and

IQR is the interquartile range of the sample. Note that taking
the cf of the pdf in (2) gives the empirical estimate

ψ
(e)
Y (t) =

1

n

n
∑

i=1

ejtyi−h
2
t
2/2, (3)

so that the use of the kde rather than the plain sample gives
an extra weighting term in (3) compared to (1) which reduces
the impact of larget values [1, p.10].

The basic problem is the same whether analytical results
or measured samples are available: extract the distribution of
X from that of Y . When an analytical expression for the
distribution of Y is known, the solution is exact and well-
known as summarized in Section III-A. Here, the pdf ofX is
obtained directly from the pdf ofY . When the distribution of
Y is unknown, but a sample is available, multiple approaches
exist where a sampley1, y2, . . . , yn is used to develop an
approximation to the pdf or cdf ofX. Alternatives are given
in Sections III-B and III-C.

III. M ETHODOLOGY

We give three approaches to extracting per-user distributions
from sum-rate distributions. In Section III-A we summarize
the well-known solution to the problem, available when the
sum-rate distribution is known analytically. In Section III-B
we consider analogies using sample-based estimates of the
sum-rate distribution using kde. In Section III-C we derivea
model based, closed form approximation to the per-user cdf
which avoids numerical integration and inversion and may be
useful in practical engineering problems due to its simplicity.

A. Method based on analytical sum-rate distributions

It is well known that [4, p.256]

ψY (t) = E

(

ejt
∑

N

i=1 Xi

)

= [E(ejtX)]N = ψN
X (t). (4)

Hence,ψX(t) = ψ
1
N

Y (t). Using the inverse Fourier transform,

fX(x) =
1

2π

∫ ∞

−∞

e−jtxψ
1
N

Y (t) dt. (5)

From (5), we observe that the exact pdf ofX is available and
that this pdf is reliant on two integrals: the inverse transform
in (5) and the original cf representation forY given by
ψY (t) =

∫∞

−∞
ejtyfY (y) dy. In practice, these integrals may

not be available in closed form and numerical methods may
be required. Even when the cf is known analytically, it can be
very difficult to evaluate (5) by standard numerical integration.
Hence, we consider an alternative approach in Section III-B.

B. Methods based on sum-rate measurements

In this section, we consider approaches based on a random
sample,y1, y2, . . . , yn, drawn from the distribution ofY . From
(1) and (3), we have the sample and kde based estimates of
ψY (t), with (3) based on a Gaussian kernel. Variations on (3)
can be constructed through the use of other kernel functions.

To obtain estimates of the pdf ofX, we use sample based
versions of (4) and (5). Hence, the cf ofX is estimated by

ψ
(e)
X (t) = ψ

(e) 1
N

Y (t), (6)

and the pdf is estimated by

f
(e)
X (x) =

1

2π

∫ ∞

−∞

e−jtxψ
(e)
X (t) dt. (7)

Merging (6) and (7), and using the Gaussian kernel gives

f
(e)
X (x) =

1

2π

∫ ∞

−∞

e−jtx

{

1

n

n
∑

i=1

ejtyi−h2 t
2

2

}
1
N

dt, (8)

where the inversion integral in (8) has to be computed numer-
ically. Direct numerical integration of (8) is known to suffer
from numerical inaccuracy and instability. We thus use the
classic approach in [5], which gives the cdf estimate directly,

F
(e)
X (x) =

1

2
−

M
∑

m=0

ℑ
[

ψ
(e)
X ((m+ 1

2 )∆)e−j(m+ 1
2 )∆x

]

π(m+ 1
2 )

, (9)

where ℑ denotes the imaginary part,M is increased until
the summation in (9) converges and∆ is a number chosen
such thatmax{P (X < x − 2π/∆), P (X > x + 2π/∆)} is
negligible. This approach is shown in Section IV to produce
very accurate results with only moderate values ofM .

The final numerical problem to be resolved is the calculation
of ψ(e)

X (t) = ψ
(e)1/N
Y (t). The cf ofY has a smoothly varying

phase, while direct computation of theN -th root delivers the
principal root, which usually results in sharp changes in phase
and incorrect results. Out of theN possible roots we must
select the root which allowsψ(e)

X (t) to have a continuous phase
evolution. We first evaluateψ(e)

Y (t) close to the origin, giving

ψ
(e)
Y (t) = E(ejtY ) ≈ 1 + jtE(Y ), (10)

for small t > 0. Here, the phase istan−1(tE(Y )), a small
positive angle. Similarly, the phase ofψ(e)

X (t) is small and
positive for smallt > 0. In this region the phase of the correct
root satisfies

∠ψ
(e)
X (t) =

1

N
∠ψ

(e)
Y (t). (11)

Once the correct root is identified neart = 0, the value of
ψ
(e)1/N
Y (t) is then calculated iteratively ast moves away from

the origin, where at each new value oft, the root is chosen to
ensure a smooth evolution of the phase.

C. Simplified inversion for measured data

Here, we model the per-user rate as a random proportion
of the sum-rate data. On average, the per-user rate is1

N
times the sum-rate. However, this is far too simplistic as an



approximation as shown in Section IV-A. Hence, we consider
a random proportion,p, such that0 ≤ p ≤ 1 andX = pY .
An approximate model forp is developed below.

Take an arbitraryX variable fromX1, X2, . . . , XN , and
without loss of generality assume it isX1. The representation
X = pY can now be rewritten in terms of the arbitrary
variable,X1, asX1 = pY and so

p =
X1

Y
=

X1
∑N

i=1Xi

. (12)

Since sum-rate variables are usually positive and uni-
modal, a classical distribution to use in model fitting is
the gamma distribution. Under this assumption,

∑N
i=1Xi is

gamma distributed and from the properties of the gamma,
X1, X2, . . . , XN are also gamma [6, p.340]. LetY ∼
Gam(r, β), which denotes a gamma variable with shape
parameter,r, and scale parameterβ. With this notation, each
Xi ∼ Gam( r

N , β) [6, p.340] and the ratio in (12) is a beta
variable [7, p.211] with the pdf

fP(p) =
p

r

N
−1(1− p)

(N−1)r
N

−1

B
(

r
N ,

(N−1)r
N

) , 0 < p < 1, (13)

where B(·, ·) is the beta function [7, p.211]. Hence, we
model the random proportion,p, as a beta variable. Additional
justification for the use of the gamma ratio leading to a beta
distribution can be found in [8], [9] where rates are success-
fully modeled by gamma variables. Also, the beta distribution
is the most widely used model for random proportions of the
form in (12). The unknown parameter in (13),r, is obtained
by fitting a gamma distribution with shape parameter,r, to the
Y data. This can be done with maximum likelihood estimation
using built in Matlab functions or via the method of moments
using r̂MOM = m2

s2 , wherem ands2 are the sample mean and
variance ofY .

Using this model, theY sample,y1, y2, . . . , yn, can be
converted to theX sample, p1y1, p2y2, . . . , pnyn, where
p1, p2, . . . , pn is a random sample of beta variables drawn from
(13). Note that theY sample is a fixed realization whereas the
p sample is unknown. Hence, an estimate for the cdf ofX can
be obtained as

F
(e)
X (x) =

1

n

n
∑

i=1

P(piyi ≤ x)

=
1

n

n
∑

i=1

Fβ

(

x

yi
;
r

N
,
(N − 1)r

N

)

. (14)

In (14), Fβ(·; ·, ·) is the beta variable cdf [7, p.211] given by

Fβ(x;α, β) =
B(x;α, β)

B(α, β)
, (15)

whereB(·; ·, ·) is the incomplete beta function.
This approach has the advantage that usingr̂ and (14) give

a closed form approximation toFX(x), avoiding numerical
issues such as the choice of kernel and bandwidth in (2). Also
avoided is the numerical inversion in (8) which may have
numerical problems due to the infinite range of integration
and the oscillatory nature of the integrand. Even for more

accurate numerical methods [5] as described in Section III-B,
numerical issues can remain and the ‘beta scaling’ approach
given in (14) can be a useful alternative.

IV. RESULTS

A. Distribution Scaling

In a few cases a variableY is infinitely divisible [6, p.397]
and here theX components ofY =

∑N
i=1Xi have the same

type of distribution. This property is rare, the Gaussian and
gamma being the main examples which might model sum-rate
data.

As discussed in Section III-C, ifY ∼ Gam(r, β) then
X ∼ Gam( r

N , β). Similarly, if Y ∼ N (µ, σ2) then X ∼

N ( µ
N ,

σ2

N ). In both cases, the infinite divisibility implies that
theX distribution is of the same type as theY distribution.
However, the shape is clearly changed. In the gamma case,
the shape parameter forY is r whereas forX it is r

N . For the
Gaussian case,Var(Y ) = σ2 whereasX has a much tighter
distribution with Var(X) = σ2

N . Hence, attempting to scale
theY distribution by a factor of1N is likely to lead to a very
poor estimate ofX. This is demonstrated in Fig. 1, where, for
N = 3, we plot the cdfs ofY ∼ Gam(3, 1) andY ∼ N (6, 3),
as well as the correspondingX distributions,X ∼ Gam(1, 1)
andX ∼ N (2, 1). Also shown are the distributions ofY/N .
We note that substantial change in shape occurs whenY and
X are compared and that theY/N distribution is an extremely
poor approximation to the distribution ofX.

B. Numerical Inversion of Empirical cf

Figure 2 shows the cdfs ofX obtained from the inversion
of the kde estimate,ψ(e)

Y (t), given in (9) for individual data
componentsX ∼ Gam(2, 1), and normalised2 measured
capacity data. As discussed in Section III-B, the cube root
of ψY (t) was chosen to ensure smooth phase evolution. The
resulting cdf is in close agreement with the empirical cdfs of
X and those obtained by inversion ofψ(e)

X (t).
The effects of the root ambiguity are shown in Fig. 3. For

X ∼ Gam(2, 1), we plot the real part of the analytical value
for ψX(t), its kde estimateψ(e)

X (t) and ψ(e)1/N
Y (t) (Y ∼

Gam(6, 1)), including variants corresponding to the principal
root and one chosen to ensure smooth phase evolution. It is
clear from Fig. 3 that it is essential to select the correct root
if a reasonable estimate of the cf is to be found.

C. Beta Scaling Method

Figure 4 is used to validate the simplified ‘beta scaling’
method of Section III-C and to predict the performance for a
greater number of users. We perform the beta and simple scal-
ing procedures on measured sum capacity data forN = 3, 10.
Also shown is the true sum rate cdf along with its Gamma fit.
The accuracy of this fit supports the use of the beta-scaling
procedure. ForN = 3, where true SU data is available, the
beta-scaled cdfs are compared with the actual empirical cdf

2Note that for reasons of commercial confidentiality we have normalised
the measured capacity to the range[0, 1].
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Fig. 1: cdfs ofY , X andX/N ; gamma and Gaussian RVs.
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Fig. 2: cdf ofX for the inversion method.

TABLE I: Comparison of SU rates - simple and beta scaling.

cdf sum rate
scaledN = 3 scaledN = 10

true beta simple beta simple
90% 1.28 0.487 0.525 0.427 0.212 0.128
50% 0.87 0.288 0.263 0.289 0.061 0.087
10% 0.51 0.082 0.101 0.172 0.010 0.051

of X and the cdf ofY/N . We note that the beta scaled cdf
closely follows the true cdf. This broad agreement is very
encouraging as this is a simple procedure, given by the single
expression in (14), which can be applied to a wide range of
data sets. Table I compares the SU rate cdf values for the two
scaling methods at 10%, 50% and 90%. We note a significant
discrepancy between the two scaling methods, in particularfor
N = 10, which again supports the need for a more advanced
approach than the simple scaling.

V. CONCLUSION

We have presented methods to derive individual user rate
distributions from the sum rate. The results are useful in
acceptance testing of mobile networks where it is considerably
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Fig. 4: SU and sum rate cdfs for measured data.

easier to measure the sum rate as compared to the individual
user rate. The findings are validated against the case when
the sum rate distribution is analytically known and when it is
derived from field measurements.
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