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Abstract—We focus on deriving the single user data rate  The essence of predicting the SU capacity probability dis-
distribution from the sum-rate distribution. We discuss a method  tribution function (pdf) or cdf from the pdf or cdf of the sum
based on the inversion of the characteristic function, valid for - canacity is the fact that the pdf of the sum J§findependent
both analytical and empirical distributions, and discuss some of . . . . . .
its numerical considerations. Subsequently, we present a novel, random variables is the (_:onvolutlon ‘?f t_helr mqrglnal dm
simplified method based on ‘beta scaling’ of the sum-rate vari- 1hus, as the sum capacity characteristic function (cf)esth
able. We validate our results using simulated sum-rate data and th power of an individual cf, theV-th order deconvolution of
data from an LTE field measurement. The results demonstrate the sum capacity pdf, or inverting th&¥-th root of the sum
close agreement with the true single user distribution. capacity cf, will give the SU capacity pdf.

In this paper, we make the following contributions:

I. INTRODUCTION « Given the exact distribution of the sum capacity, we show
A key aspect in the acceptance testing of cellular netwarks i that the single user capacity is poorly estimated by a
the estimation of their capacity, where the capacity cutivda simple scaling of the sum distribution.

distribution function (cdf) is measured and compared again « We outline methods based on the inversion of the sum-
acceptable target values. The measurement is done, for-exam rate cf for both analytical and measured data. We discuss
ple, via drive testing, using specialized and calibratet tser some of the associated numerical challenges and present
equipment (UE) to perform an FTP download. methods of overcoming them.

Such testing is easy if there is only a single user or a verys We present a novel, simplified method of obtaining the
small number of users in the cell or cluster consuming all ~ single user cdf based on ‘beta scaling’ of the measured
the radio resources. We define this as the sum capacity of the Sum rate data, which avoids the numerical cf inversion.
cell (or cluster) under test. The acceptance targets, hewev We have conducted an LTE trial in tR600 MHz band with
define both sum capacity and a single user (SU) capacity whe(2, 2) MIMO configuration and have measured sum capacity
a predetermined number of users are simultaneously anges&n a cell surrounded by a ring of fully loaded interfering
the network. A measurement of SU capacity can be curcells that form the first tier of interfering cells in a praeti
bersome and expensive to undertake, as it requires multifdgout. We have also measured SU capacity wBeb/Es
synchronised UEs driving independently. Furthermoreretheare performing simultaneous FTP downloads. We validate our
is a practical limit to the number of UEs that can be testedontributions using these measurements.

Thus, there is a need to predict SU capacity from the sum
capacity, particularly for a large number of users. [l. PROBLEM DESCRIPTION

Since measured sum-capacity results originate from only a . .
handful of UEs, inferring the individual rates of, for exalp Cor_|5|der the sum-ra’Fe va.r|abl¥,,_co_mposed“of thg sum
10 users from sum-rate measurements of 3 will only provi N independent and identically distributed (iid) variaBles

— N .
an estimate. Nevertheless, such estimates remain pictic fl’XX2’)'("’XN)’(SU?h éhaﬂ; a Ei:lX?t'hTS]e codrPrgon Ft)dcfj
important. The focus of this paper is to provide a set of tecf: “*1><\2:-- -, AN IS UENOLE fx(z) with the cdf denote
tSFx(JJ). Here, X denotes a genericX; variable. The

niques applicable to a broad class of sum-rate measurem _ : B X
and models where the SU rates are required. Our methods %?ge;p;r';d:jnegngge;pg{ ()t) Fi (]E)(e;n d)illJ F(z)r }:éstg:ctri)\?;indf
y\Y), 'y Y Y ' .

designed to be widely applicable and hence are not deriv@ ) NI .
based on any individual channel model or assumptions. While hen_analy_ncal dlstr|bl_1t_|ons are unavailable but a random
the motivation for this work is the sum-rate problem, thgample is available, empirical estimates may be formed. Let

: o . be a random sample drawn from the distribution
methods described apply to the general problem of derivit 2> Yn : Lo
an individual distribution from a distribution of the sum. 0$ Y. Then, a sample estimate of the cf is given by [1, p.9]
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estimation (kde) [2, p.15], where the pdf is estimated by B. Methods based on sum-rate measurements

Y — v In this section, we consider approaches based on a random
T nh Z < ) @ sampleyi, o, ..., yn, drawn from the distribution of". From
(1) and (3), we have the sample and kde based estimates of
whereh is the bandwidth and((-) is the kernel function. The «y (¢), with (3) based on a Gaussian kernel. Variations on (3)
art of kde therefore relies on the judicious choicehoBind can be constructed through the use of other kernel functions
K(-). In this paper, we Juse the common choice of a GaussiarTo obtain estimates of the pdf of, we use sample based

Y

kernel, K () = \/#27 —*, and use Silverman’s rule of thumbversions of (4) and (5). Hence, the cf &f is estimated by
[3] for the bandwidth, so that = 1.064n "5, where A = ©ny — 0% 6
x () =1y N (2), (6)

min{s, {%%}, s is the standard deviation of the sample and
IQR is the interquartile range of the sample. Note that takirand the pdf is estimated by
the cf of the pdf in (2) gives the empirical estimate (e) 1 [
. @ =g [ erudmar ™
P = 3o, .
i=1
so that the use of the kde rather than the plain sample gives 1 ~
an extra weighting term in (3) compared to (1) which reduces fX (x) = 2—/ e Jte { Zemﬁ a } dt, (8)
the impact of large values [1, p.10]. TJ-
The basic problem is the same whether analytical resul{ere the inversion integral in (8) has to be computed numer-
or measured samples are available: extract the distributio jcally. Direct numerical integration of (8) is known to seiff
X from that of Y. When an analytical expression for throm numerical inaccuracy and instability. We thus use the

distribution of Y is known, the solution is exact and We”-dassic approach in [5], which gives the cdf estimate diyect
known as summarized in Section llI-A. Here, the pdfXofis © o

obtained directly from the pdf of. When the distribution of Mo [%f ((m+ %)A)B”(m+5)Am}
B Z m(m + %)

Merging (6) and (7), and using the Gaussian kernel gives

Y is unknown, but a sample is available, multiple approached’sx (%) = . (9)
exist where a sampleg;, ., ...,y, IS used to develop an m=0
approximation to the pdf or cdf oK. Alternatives are given where & denotes the imaginary parfy/ is increased until
in Sections 11I-B and IlI-C. the summation in (9) converges amx is a humber chosen
such thatmax{P(X < x — 27/A),P(X > z + 2r/A)} is
Ill. METHODOLOGY negligible. This approach is shown in Section IV to produce
We give three approaches to extracting per-user distdbsti very accurate results with only moderate values\of

from sum-rate distributions. In Section IlI-A we summarize The final numerical problem to be resolved is the calculation
the well-known solution to the problem, available when thef ¢§§) (t) = 1/;§f)1/N(t). The cf of Y has a smoothly varying
sum-rate distribution is known analytically. In Section-Bl phase, while direct computation of tkié-th root delivers the
we consider analogies using sample-based estimates of phiecipal root, which usually results in sharp changes iageh
sum-rate distribution using kde. In Section 1lI-C we derave and incorrect results. Out of thN possible roots we must
model based, closed form approximation to the per-user eslect the root which allows'? (¢) to have a continuous phase
Wh|Ch a.V0|dS numel‘lcal |ntegrat|0n and |nVerS|On and ma.y l&cﬂuuon We f“'st eva'ua‘[ )(( Close to the Or|g|n g|v|ng
useful in practical engineering problems due to its sinifglic

DN | =

(1) = E(eﬁY) ~ 1+ JtR(Y), (10)
A. Method based on analytical sum-rate distributions for small ¢ > 0. Here, the phase isan-L(fE(Y)), a small
It is well known that [4, p.256] positive angle. Similarly, the phase ofy’ (¢) is small and

Yy () =E (ejt >N, Xz-) — BN = N@).  (4) positive_fo_r smallt > 0. In this region the phase of the correct
root satisfies

1
— X i i - . 1, (e
Hence,x (t) = ¢y (t). Using the inverse Fourier transform, 4@()(,5) — sz/)}(/)(t). (11)
o0
fx(z)= i/ e‘jmwé (t)dt. (5) Once the correct root is identified near= 0, the value of
21 J oo w$)1/N(t) is then calculated iteratively asmoves away from

From (5), we observe that the exact pdfXfis available and the origin, where at each new valuefthe root is chosen to
that this pdf is reliant on two integrals: the inverse transf ensure a smooth evolution of the phase.

in (5) and the original cf representation farf given by

vy (t) = [ e’ fy-(y) dy. In practice, these integrals may

not(b)e avfallable in (Elo)sed form and numerical methods mgy Simplified inversion for measured data

be required. Even when the cf is known analytically, it can be Here, we model the per-user rate as a random proportion
very difficult to evaluate (5) by standard numerical intéigra  of the sum-rate data. On average, the per-user ratg; is
Hence, we consider an alternative approach in Section.lll-Bmes the sum-rate. However, this is far too simplistic as an



approximation as shown in Section IV-A. Hence, we considaccurate numerical methods [5] as described in SectioB,|lI-
a random proportionp, such that) < p < 1 and X = pY. numerical issues can remain and the ‘beta scaling’ approach

An approximate model fop is developed below. given in (14) can be a useful alternative.
Take an arbitraryX variable from X, Xo,..., Xy, and
without loss of generality assume it ;. The representation IV. RESULTS

X = pY can now be rewritten in terms of the arbitraryA Distribution Scaling

variable, X, as X; = pY and so ) o o
x x In a few cases a variablg is |nf|n|tezl\>/ divisible [6, p.397]
1 1

p="t=——. (12) and here theX components ot” =} ;" ; X; have the same

Y D oimn Xi type of distribution. This property is rare, the Gaussiad an
Since sum-rate variables are usually positve and uflamma being the main examples which might model sum-rate
modal, a classical distribution to use in model fitting ifat@. _ . _

the gamma distribution. Under this assumption,” , X; is ~_AS discussed in Section lll-C, " ~ Gam(r, §) then
gamma distributed and from the properties of the gammd&, ~ Gj‘m(%vﬁ)- Similarly, if ¥ ~ N(p,0%) then X' ~

X1, Xs,...,Xy are also gamma [6, p.340]. Let¥ ~ N (4, %) In both cases, the infinite divisibility implies that
Gam(r, ), which denotes a gamma variable with shap@e X distribution is of the same type as the distribution.
parametery, and scale parametgér. With this notation, each However, the shape is clearly changed. In the gamma case,
X; ~ Gam(4, B) [6, p.340] and the ratio in (12) is a betathe shape parameter fdf is » whereas forX it is f. For the

variable [7, p.211] with the pdf Gaussian cas&/ar(Y) = o2 V\Q/hereasX has a much tighter
. w-nr_, distribution with Var(X) = % . Hence, attempting to scale

folp) =22 (1-p) ¥ L 0<p<l, (13) theY distribution by a factor ofy; is likely to lead to a very
B (%7 W;”) poor estimate ofX'. This is demonstrated in Fig. 1, where, for

N = 3, we plot the cdfs o ~ Gam(3,1) andY ~ N (6, 3),
where B(-,-) is the beta function [7, p.211]. Hence, weas well as the corresponding distributions,X ~ Gam(1,1)
model the random proportiop, as a beta variable. Additionaland X ~ A(2,1). Also shown are the distributions af/N.
justification for the use of the gamma ratio leading to a bel®e note that substantial change in shape occurs Wwhemd
distribution can be found in [8], [9] where rates are suceesx are compared and that the/ N distribution is an extremely
fully modeled by gamma variables. Also, the beta distrimuti poor approximation to the distribution of.
is the most widely used model for random proportions of the
form in (12). The unknown parameter in (13), is obtained
by fitting a gamma distribution with shape parametetp the
Y data. This can be done with maximum likelihood estimation Figure 2 shows the cdfs of’ obtained from the inversion
using built in Matlab functions or via the method of moment8f the kde estimatey{"’ (¢), given in (9) for individual data
using#yom =, wherem ands? are the sample mean and=omponentsX ~ Gam(2,1), and normaliseti measured
variance ofY’. capacity data. As discussed in Section IlI-B, the cube root

Using this model, theY sample,y1,vs,...,yn, can be of wy_(t) was chosen to ensure smoqth phase e_v_olution. The
converted to theX sample, piyi, paya, .- ., pnyn, Where resulting cdf is in F:Iose ag'reemgnt W|tr)1 the empirical cdfs o
P12, ..., n is arandom sample of beta variables drawn fronf @nd those obtained by inversion ok (1), o
(13). Note that th&” sample is a fixed realization whereas the The effects of the root ambiguity are shown in Fig. 3. For
p sample is unknown. Hence, an estimate for the cdkafan X ~ Gam(2,1), we plot the real part of the analytical value

B. Numerical Inversion of Empirical cf

be obtained as for ¢x(t), its kde estimatey’(t) and ¢{"/" (1) (v ~
n Gam(6, 1)), including variants corresponding to the principal
F)(f)(;,;) — 1 ZP(piyi <) root and one chosen to ensure smooth phase evolution. It is
ni clear from Fig. 3 that it is essential to select the correct ro

10 N —1)r if a reasonable estimate of the cf is to be found.
zfzpﬁ E;L7g ) (14)
n im1 Yi N N
B C. Beta Scaling Method

In (14), F5(-;-,-) is the bet iable cdf [7, p.211] gi b ) . . R .
n (14), Fs(5-,-) is the beta variable cdf 7, p I given by Figure 4 is used to validate the simplified ‘beta scaling’
B(z; o, B)

Fy(z;a,8) = (15) method of Section III-C and to predict the performance for a
ATt B(w, B) greater number of users. We perform the beta and simple scal-
ing procedures on measured sum capacity datavfer 3, 10.

. . . Also shown is the true sum rate cdf along with its Gamma fit.
This approach has the advantage that usiagd (14) give The accuracy of this fit supports the use of the beta-scaling

a closed form approximation (@ (z), avoiding numerical rocedure. FotN = 3, where true SU data is available, the

issues such as the choice of kernel and bandwidth in (2). AIEO ; -
. . . . L . eta-scaled cdfs are compared with the actual empirical cdf
avoided is the numerical inversion in (8) which may have

numerical pr_OblemS due to the im_‘inite range of integration2ye that for reasons of commercial confidentiality we havenadised
and the oscillatory nature of the integrand. Even for motee measured capacity to the rarigel].

whereB(+; -, -) is the incomplete beta function.
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Fig. 2: cdf of X for the inversion method.

easier to measure the sum rate as compared to the individual
Yiser rate. The findings are validated against the case when

scaledN =3 scaledN = 10 the sum rate distribution is analytically known and whersit i
true | beta | simple| beta | simple derived from field measurements.
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